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models in ,orrectly predicting squadron performance ratings

during cross-validation trials (81 nercent versus 61

percent).

Neurocomputing is a new, rapidly emerging technology

that has only recently been explored in applications beyond

signal, speech and inage processing. These results

nemonstrate a successful application of neurocomputinn as an

organizational performance assessment too!. In the

organizational sciences, this approach to effectiveness

measurement may prove to be a useful alternative to

conventional least square estimation methods. This

technology can have immediate application as a management

decision making tool to help maximize composite

organizational effectiveness.
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PREDICTING ORGANIZATIONAL PERFORMANCE:

APPLICATION OF NEUROCOMPUTING

AS AN ALTERNATIVE TO STATISTICAL REGRESSION

1. Introduction

Overv iew

Concern with the effecti-eness, productivity,

effic-iency or excellence of organizations has always been a

preoccupation of managers, receiving much attention in the

popular and professional literature (2:539; 12:514). Much

of this interest stems from the desire to recognize high

quality performance and to understand how component

attributes combine to yield an effective organization.

Traditional approaches to organizational performance

evaluation use efficiency ratios or productivity

measurements which are well defined and relatively easy to

measurp. However, increasing attention is being directed

toward the broader construct of organizational effectiveness

t,;hich is much harder to measure than process efficiency.

In many organizations, it is not clear what constitutes

optimal performance. Effectiveness criteria is ambiguous

aid cannot be defined simply in terms of inputs and outputs

or profit. and loss. Public sector organizations, in

particular, lack the private sector dimension of profit as



an ag!regate measure of effect ivceness and must therefore use

aiternativ- approaches to oerformance evaluation (1:87-88).

Effectiveness of such organizations is necessarily

determined in relative terms using subjective means of

evaluation. Typically, multiple measures or .Jugments are

used to arrive at a single aggregate measure of

)r-:anizationaL performance (12:523).

T oIn the case of an Air Force Unit Effectiveness

Insuection, such an approach is used to derive a camposite

.,r4anizational rating from a collection of disjoint

observations (e.g. exercise response, budget compliance,

etc. Human judgement must be used to discern from these

observations patterns which correspond to a given ordinal

performance rating.

A means to capture this human judgement and approximate

the relationship, mathematically or otherwise, between such

component oservations and overall performance would Le

useful. This modeled relationship could be a supplement to

zmb.jective evaluations and also a helpful management tool.

S uch a tool would he particularly useful to commanders

',f base LeveI civil engineering squadrons. Civil

ng~n .ring squadrons are complex with many diversified

per'at i rns. Commanders are frequently faced with

i-)nfl it in (o)bJeotives and must determine which objective

,) r f rtifc.s most to the success of the orsganization.



A method to independently derive a composite unit

rating from component organizational attributes may help

commanders better predict the outcome of their decisions.

Such A method could indicate which course of action wuuld

yield the desired outcome. For example, some expert

evaluators consider a civil engineering squadron "effective"

in terms of its overall support of the host wing mission.

Such support requires productive use of design and

construction resources and shop craftsmen to provide and

maintain host wing facilities. Also important is training

Df military personnel in preparation for periodic wing

mobility exercises. Both objectives contribute to overall

mission support; however, host wing facility support is

sometimes accomplished at the expense of mobility training

and v-ice versa. A means to independently assess composite

effectiveness would permit a commander to calibrate

allocation of resources toward each objective to maximize

overall mission support.

R,'earch Objective

Civil en'ineering organizations are composed of many

hranc-he.s and shops working in concert to fulfill a broad

nift mission. It. is possible to measure the efficiency

(and, in part, effectiveness) of each component. But, it is

riot as clear how they combine or work in concert to yield an

"excellent', "satisfactory, "marginal" or "unsatisfactory"

3
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organizational effectiveness. With the complexity of

organizational dynamics, it would be an enormous if not

impossible task to define an adequate knowledge base for an

expert system application. Approximation of functional

mappings or relationships between predictors and overall

ratings via mathematical regression may be possible.

However, such relationships may be suotle and involve

multiple interactions among predictors. Furthermore, the

functional form of the underlying domain model is unknown

and such an approximation would likely be crude at best.

Neurocomputing. In recent years a new computer

processing technology has emerged capable of human like

performance in such intelligent information processing tasks

as classification and pattern association. Known

alternately as neural networks, neurocomputing, or parallel

distributed processing, this technology may overcome many of

the limitations of traditional mathematical tools.

Neural networks can solve problems involving complex

mappings or relationships which do not lend themselves to

conventional algorithmic solution. This characteristic

suggests neural networks may have a useful application as a

tool for predicting organizational performance.

In particular, the recent emergence of back-propagation

networks as an alternative means of function approximation

may make it possible to "extract" the human judgement from

past organizational performance evaluations and use it to

! ! | p .5



independently derive composite performance ratings from

subsequently collected data.

Unlike statistical regression, which fits selected

classes of fitting functions to the data, back-propagation

networks "learn" the functional relationship from exposure

to training input-output examples. These networks form

their own internal representation of the function instead of

conforming to a hypothesized model. This characteristic

permitz back-propagation networks to fit data to unknown

functional forms which may account for the apparent ability

of back-propagation to approximate functions better than

statistical regression techniques (5:2). Neural networks

have been used with impressive results in similar

generalization problems. In particular, neural networks

have been successful in scoring loan applications and

predicting corporate bond ratings (6:40; 3:449).

This research applies this neurocomputing technology to

the problem of predicting organizational performance.

Specifically, the content and unit ratings of past civil

engineering squadron unit effectiveness inspection reports

will be used to "teach" a candidate neural network to

discriminate between "excellent" and "satisfactory"

organizations. The resulting trained network will be used

to evaluate squadrons from separate report data.

This application demonstrates the utility of neuro-

computing as a measurement and prediction tool for the

6



organizational sciences and perhaps may lead ultimately to

an organizational assessment tool for managers.

It , 7



1i. Background

History of Neurocomputing

Research in the area of neural networks began some

forty years ago with the work of early cognitive scientists

seeking to understand the mechanisms of biological neural

functioning. Inspired by the physiology and impressive

information processing ability of the human brain, this work

eventually led to mathematical models and ultimately

physical implementation of computer networks of neuron-like

elements.

One of the earliest implementations of such networks

was the single-layer perceptron developed by Rosenblatt in

the late 1950s (18:153-159). A mathematical model of a

single layer perceptron is included in appendix A. This

network generated much interest when initially developed

because of its ability to recognize simple patterns.

By 1969, however, Minsky and Papert proved single-layer

perceptrons were incapable of solving complex pattern

recognition problems with overlapping decision regions

(I12:111; 14:227-232). An example of such a problem is the

exclusive-or parity problem described in appendix B.

Widespread interest in neural networks subsequently waned

an(i it was not until the recent work of Hopfield, Rumelhart

and others that vigorous research in this area resumed

(13:37).



Today ,,:ural network models have been developed for

Thole classes of problem specific applications. These

include comhinatorial optimization (e.g. The travelling

salesman problem), pattern recognition (e.g. speech and

image processing) and classification (e.g. predicting bond

ratings) (8:141-152; 4:826-834; 3:443-450; 11:183-192).

Simple Pattern Recognition

Many neural network applications involve some form of

pattern association - matching a set of inputs with a

prede-:ermined class of outputs. For example, a single layer

perceptron can associate pixel pattern coordinates with

certain typed characters.

A single layer perceptron uses a collection of one or

more processing elements to receive and process input

signals and transmit output signals (see appendix A). The

input signals correspond to variables (pixel pattern

coordinates) and the signal emerging from the network

corresponds to a "mapped" classification (typed character).

Borrowing the mathematical function analogy, this

network is like a 'black box' which receives input signals

corresponding to independent variables. After 'turning the

crank', the emerging signals represent the dependent

variable or nominal classification.

The internal state of the network (connection weight

value-) is determined from exposure to input-output

9



examples. The internal state of the network, in effect,

'captures' or defines the functional relationship between

the input variables and nominal classes. The ability of

single layer perceptrons to associate or "map" a set of

inputs with a class of outputs is limited to simple

linearly-separable classes (see appendix B).

To support more complicated mappings, multi-layer

networks are required. Unlike a single-layer perceptron,

the pathway from input to output in a multi-layer network

goes through more than one processing element.

By the mid 1980s, a learning algorithm for multi-layer

networks had been developed which could modify the internal

state of hidden layers in response to supervised training.

Known as back-propagation, this algorithm employs a aradient

descent heuristic that enables a network to self-organize in

ways that improve its performance over time (10:155). On-

going research into the theory and application of back-

propagation networks suggests such networks are "universal

approximators" capable of inducing arbitrarily complex

input-output mappings (5:2; 9:3; 10:160).

Multi-layer Perceptron

A multi-layer perceptron or feed-forward network,

consists of a collection of processing elements arranged in

multiple layers. Each processing element receives many

input signals from elements in previous layers but transmits

10



only a single output signal. This output signal fans out

along many pathways to provide input signals to processing

elements in subsequent layers (figure 1). Each processing

element maintains in local memory the values of adaptive

coefficients known as "weights". These weights correspond

to connection strengths between processing elements (6:38).

YI Y2 Y3 - Output Array

--- Output Layer

Connection

.. -Hidden Layer

Processing

Element

X1 X2 X3 -Array of Input
Signals

Figure 1. Multi-layer Perceptron.

The value of each element output signal is determined by a

transfer function - a mathematical formula that defines the

elements' output as a function of whatever input signals

have just arrived and the weights present in local memory

(6:38). Figure 2 is a mathematical model of a single

processing element.

11



Xl I1nput Output

X2 f Y

X3
Summation Transfer
function function

Xi = incoming signal
Wi = connection weight
Wo = bias similar in function to a threshold
z = net input signal = EWi*Xi + Wo
Y = output signal = f(z) = f( EWi*Xi + Wo)

f(z) = transfer function

Figure 2. A Simulated Neuron

The transfer function is typically the sigmoid logistic

function (figure 3), although it can be any differentiable

function. The sigmoid function is defined as,

f(z) = 1/(I + exp(-z) ).

When a vector array of input signals is imposed upon a

trained network, processing elements in the first layer act

simultaneously to process and transmit signals to the second

layer. The second layer simultaneously processes and

transmits signals to succeeding layers until the output

signal array emerges from the network.

One way to regard such a multi-layered network is as a

"black box". Entering values are real or binary signals

representing indicator variables and the output is an array

12



0 z ( (net input signal)

Figure 3. Sigmoid Function

of binary signals corresponding to a nominal-type

classification. The hidden and output layers of processing

elements represent the "black box" performing the functional

mapping between predictor variables and nominal class.

Network learning

A multi-layer network learns how to perform the correct

functional mapping by way of supervised training. In

supervised training, the network is supplied with both input

data and desired output data (correct answers as examples).

In each trial, an input example is imposed on the network

and the actual network output is compared with the desired

output. If the output is in error, this error or "delta" is

used to make corrections to elements in the hidden layers by

the generalized delta rule (see appendix C).

The delLa rule is a means of propagating the output

error backward through the connections to previous layers.

Thesp distributed deltas are then used to modify the

13



orresponding connection weights. This process is repeated

in subsequent training trials until the weights converge to

stable values and the output error reaches an acceptable

level. By this method, the network adapts and organizes

information within itself to "learn" the functional mapping

or association. (6:38; 18:319-328; 10:158-160)

The back-propagation algorithm is a generalization of

the least mean square algorithm using a gradient descent

technique to minimize the mean square difference between the

desired and actual net outputs (13:49). As such, this

method may result in convergence to a local minimum instead

of the desired global minimum error. Occurrence of local

minima can be reduced or avoided by modifying network

architecture (allowing extra processing elements, etc.) or

making many training runs starting from different sets of

random weights (13:50; 18:328-334). The back-propagation

algorithm is summarized in appendix D.

Applications

Multi-layer networks using back-propagation are ideally

suited for parallel computer architectures. But, in the

absence of a parallel computer, neural networks are

typically implemented as programmed simulations on

conventional serial-type computers (17:62; 6:17).

While some of these serial type networks may be awkward

and computationaly inefficient when implemented as

14



prcgrammed simulations, these network models have

nevertheless been successfully applied to generalization

problems where conventional mathematical modeling techniques

have yielded poor results.

Neural networks have been shown to perform much better

than statistical regression for applications such as

predicting the default risk of bonds and evaluating the

credit risk of bank loans (3:450; 6:17). Conventional

regression approximations attempt to fit the data to a

specified class of curve fitting functions. These methods

assume the underlying relationship between predictor

variables and the data follows this function. Judging from

the complexity of these applications, such an assumption is

likely to limit the utility of regression as a prediction

tool. Neural networks, by contrast, learn their own

internal representation of the underlying function and do

not require any up-front assumptions. In the bond rating

application, a 10 variable neural network model has

demonstrated an 88% success rate in correctly classifying

bond ratings versus 65% for the linear regression model

2:4.19).

The problem of assessing organizational effectiveness

is a comp-ex one typically requiring the application of

expert judgment to recognize patterns corresponding to a

given level of performance. Variables influencing

orrajiizational effectiveness may involve complex second and

15



third de i'e interaction and are typically large in number

relative to the number of available data points Hence,

conventional statistical regression has not proven

particularly useful as an analytical means of predicting

c-roanizational performance. (12:529; 7:1).

Neural networks have been successfully applied to

similar generalization problems where conventional least

squared estimation methods have yielded poor results (e.g.

bond rating). Such problems share the difficulties inherent

in an oreanizational performance assessment application;

namely, a lack of knowledge about the underlying form orf the

functional relationships. The success of neurocomputing in

applications where the underlying fuctional forms are

unknown, suggests extension of this app-oach to the problem

of" predicting organizational performance may be a fertile

area of application.



Ili. Method

Prcb 1_e m summarv

Civil engineering squadrons along with other base-level

organizations undergo unit effectiveness inspections at

ueriodic intervals. These inspections are conducted and

documented by teams of experts dispatched from each major

c mmand headquarters. To ensure consistency among

ovaluatinns, each civil engineering squadron within a given

command is evaluated by a common team of inspectors.

Bec-ause of the typical size and diversity of civil

- ngineering squadrons, an evaluation team must consider and

irilividually document the performance of a host of component

1 ranches, shops and other characteristics before a composite

unit. rating is applied. If the expert judgement used to

-,(mhine these multiple observations into a single aggregate

rating is applied consistently across all squadrons, it

f'oll,o.s that an underlying pattern or deterministic

rflationship exists between documented observations and

,'omPosite ordinai LiA.iug4s. This research effort sees to

.lpprrimate this underlying relationship with a back-

pr,)pag4tion neural network and to compare the prediction

pf:rformance of the network with conventional regression

'.7



Summary of Method

This research will use the content and ratings of past

unit effectiveness inspections to train a neural network to

associate component organizational attributes with the

correct ordinal performance rating. Inspection reports will

be divided to provide data for both network training and

testing. The training and testing samples will also be used

to fit and test a regression model.

Collection of Data

Civil engineering unit effectiveness inspection reports

from Strategic Air Command will be the source of the

examples used for network training. The inspection reports

are selected to fall within a finite period (approximately

24 months) and are limited to a single major command to

minimize the influence of external factors which may

diminish the accuracy of the network approximation. This

limitation is designed to ensure uniform application of

rating judgement and ensure relative homogeneity of civil

engineering squadrons in terms of organization and mission

wiihout adversely restricting the sample size.

Processing Data

Each sampled inspection report will be examined. Any

documented observation which may influence composite unit

performance is identified as a candidate predictor variable.

18



A linear scale is employed to convert each identified

observation into a value from -3 to +3 based on the report

narrative associated with that observation. For example, if

a report item suggests knowledge of communications security

(COMSEC) is unsatisfactory based on the outcome of COMSEC

tests, the variable corresponding to COMSEC would be

assigned a value of -3. These identified variables form the

input signals to the network. Each variable corresponds to

an input node.

Network approximations are generally robust and tolerant

of substantial error. Hence, any error introduced in the

scoring of borderline cases is not expected to adversely

affect the results. The criteria for scoring individual

observations is provided in appendix E.

Network Training

The evaluation reports are randomly partitioned into a

training set and a testing set. Each set provides a

representative mix of each rating type. Input variable

arrays and corresponding desired outputs from the training

set are used to train a candidate network as described in

chapter II. A variety of architectures and alteration of

network parameters may be required to achieve learning

convergence.

19



Validation and Comparison

Inspection reports from the testing set will be used to

predict the performance of the corresponding squadrons using

both the regression model and the trained neural network.

Testing of each model on data partitioned from the original

sample is necessary to get an indication of the respective

model prediction accuracy.

A paired sample statistical test will determine the

significance of any difference between the number of correct

predictions of the regression model and the trained neural

network. A prediction accuracy as good or better than that

achieved by regression will establish the neural network as

an alternative measurement and prediction tool for the

organizational sciences and a potentially useful approach to

organizational performance evaluation.

20



IV. Results

Data Collection

Twenty three civil engineering squadron unit

effectiveness inspection reports were obtained from

Headquarters Strategic Air Command. These reports

documented inspections conducted between April 1987 and

March 1989 and included 19 flying wing bases and 4 missile

wing bases. Although possible unit ratings range from

"unsatisfactory" to "outstanding", the reports obtained

included squadron ratings of "marginal" (1), "satisfactory"

(6), and "excellent" (16). Because of the dearth of

outliers, the scope of this research was limited to

discrimination between "excellent" and "satisfactory"

squadrons.

Identification and Scoring of Variables

Each of the remaining 22 reports composing the sample

of "excellent" and "satisfactory" squadrons were examined

for component attributes which potentially influence the

composite squadron performance rating. Thirty two candidate

predictor variables were subsequently distilled from the

collection of reports. Although some of these variables

were not explicitly addressed in all reports, they

nevertheless correspond to organizational components or

functions common to all squadrons command-wide.

21



Identification and scoring of some variables was

complicated by the on-going command-wide reorganization of

operations branch shops to a zonal maintenance concept.

Reports dating from early 1988 began reflecting changes in

the organizational structure of the operations shops and

required careful interpretation and scoring to maintain

consistency. For example, the new operations shop

organization included a "horizontal construction" section

which performs functions formerly handled by the old

"pavements and grounds" section. The performance of this

function under both the old and new organization was

consequently scored under the common variable

"HOPIZ".

Another complication arose in scoring of some

borderline cases when the report narrative included both

favorable and unfavorable comments. Such cases required

subjective interpretation to determine the predominant

"tone" of the narrative.

Assigning values to the candidate variables was

otherwise fairly straight-forward. Scoring criteria and

examples are included in appendix E.

To construct a regression model, there must be enough

degrees of freedom available to estimate the mean squared

error variance (19:11). Hence, with 22 cases available (21

with a cross-validation sample withheld), the number of

variables in the model must be limited to 19 or less.
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The original set of 32 variables was, therefore, reduced to

18 to permit construction and cross-validation of regression

models.

Substantial reduction in the number of variables was

achieved by consolidating some component functions into a

single parent branch or function. For example, the

variables corresponding to Design, Construction M-anagement,

Environmental & Contract Planning and Real Property were

replaced by a single variable representing the parent

branch, Engineering and Environmental Planning. The

corresponding report narratives include an overall

assessment of this parent branch.

Other variables were eliminated based on low

correlation with the dependent variable and subjective

considerations. For example, the variable representing

vehicle operator care had a very low correlation with the

dependent variable relative to the other predictors (0.02).

This variable was also qualitatively judged less important

as a predictor of overall performance.

Revision and consolidation of the variable set

eliminated most of the missing observations. Variables in

the revised set were either explicitly addressed in the

report narratives or were judged "neutral" based upon the

report context. The revised variable set is provided in

Table I. The complete data set with reports and

rorrespond~ng variable values are included in Appendix F.
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Because the contents and ratings of specific reports

are orivileged, no base or squadron is identified. For

purposes of this research, each report is identified by a

number from I to 22. These numbers are arbitrary and do not

correspond to any particular base or squadron nomenclature.

Table 1. Revised Variable Set

Variable Description

DPCWD Disaster Prep\Chem Warfare Defense
TRNG Unit Training Manager
ADMIN Administration\Orderly Room
DEl Industrial Engineering
DEU Financial Manager
DEE Engineering & Env Planning
DEF Fire Department
DEH Family Housing
SHELP Self-Help Store
PBEEF Readiness Management
WKCTL Work Control
LOG Logistics\Material Control
PLAN Planning
HORIZ Horizontal Construction
VERT Vertical Construction
ZONE Craftsmen\Zonal Maintenance
UTIL Utilities
SANIT Sanitation\Water & Waste

Partitioning of Samples

Conventional data splitting was not deemed practical

for validation purposes because of the small number of

.atisfactory" samples (6) and the lack of available degrees

of freedom. Consequently, the cross-validation of split

samples was accomplished in the manner of the PRESS

statistin calculation (15:430). This is accomplished by

twithholdinv one observation from the sample and using the
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remaining observations to fit the regression model. This

model is then used to predict the withheld observation.

This procedure is repeated for the remaining observations

selected for validation.

The neural network cross-validation is accomplished in

exactly -he game manner. The same observations are used to

train the neural network which in-turn is used to predict

the withheld observation.

Selection of Reduced Variable Set

To broaden the comparison of the regression and neural

network models, alternative reduced variable combinations

were selected for obtaining predictions from common input

data. Initially, several stepwise variable selection

methods were used; however, backward elimination, forward

selection and stepwise methods all yielded different model

compositions. Qualitative judgement was necessary to arrive

at the reduced variable combinations in Table II. Results

of the stepwise analyses are included in Appendix G.

To maintain consistency in the regression - neural

network comparison, each of the reduced set variables were

retained in all cross-validation rearessions even though, in

many cases, the regression statistics suggested not all beta

coefficients were significant. Separate optimization

procedures along with construction of separate network

architetures would otherwise have to be performed for each
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of the nearly 70 cross-validation regressions. Fixing the

composition of the regression and neural network models

a priori does not diminish the validity of the model to

model comparison. Any differences in model to model

prediction accuracy are readily discerned.

Table II. Reduced Variable Sets

Full 18 Reduced Reduced
Var Set 13 Var Set 8 Var Set

DPCWD ADMIN DEI
TRNG DEI DEE
ADMIN DEU DEF
DEI DEE DEH
DEU DEF PBEEF
DEE DEH VERT
DEF PBEEF UTIL
DEH WKCTL SANIT
SHELP LOG
PBEEF HORIZ
WKCTL VERT
LOG UTIL
PLAN SANIT
HORIZ
\,'ER T
ZONE

UTIL
SANIT

Regression Analysis

Since the data is limited to two nominal classes

(excellent and satisfactory), the following binary outcomes

were established for the dependent variable:

I = Excellent

0 = Satisfactory
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ubseauent cross-validation predictions were interpreted

excellent" for fitted values greater than 0.5 and

satisfactory" for fitted values less than 0.5.

The logistic transformation was used in each cross-

validation regression to constrain the response function

(0 < Y < 1) and improve the overall fit. Figure 4 is an

example of the logistic response function.

1.0

V Y = !/( + EXP(-Z))

0.0

Z BO + BI*Xl + B2*X2 . . . Bn*Xn

Figure 4. Logistic Response Function

Since unequal error variances are characteristic of

models with dependent indicator variables, the logistic

regression coefficients were computed using weighted least

3quares. Weighted least squares regression provides more

efficient estimates and diminishes the effect of unequal

error variances (15:354-367). Fitted values from initial

n !heihted logi stic regrc-ssions were used to compute the
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weights. STATISTIX II analytical software package was used

to compute the weighted logistic regression coefficients.

Neural Network Training

The same reports used to fit the cross-validation

regression models were also used to train neural networks.

Presentation of the training examples alternated between

excellent" and "satisfactory"

Two output nodes were used to represent the two nominal

classes and the following desired training set outputs were

established for each:

YI _Rating

0 1 Excellent

1 0 Satisfactory

The trained network output node with the highest value is

considered "on" and the other "off". Thus, the nominal

class corresponding to the "on" node represents the network

prediction.

Figure 5 is an example of an 8 variable network. In

Fivire 5, an array of values representing the 8 variables

enter the network at the bottom. Emerging from the top are

two signals, each corresponding to a nominal class

("satisfactory" or "excellent"). For a trained network, one

signal is typically "large" () 0.9) and the other "small"
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- - - j .- I

Figure 5. 8 Variable Neural Network Model

(< 0. 1). The nominal class corresponding to the "large"

signal represents the network prediction.

A Turbo Pascal neural network simulation written for

this applioat.ion is in appendix H. This rprogram works but

"~as s'iprceded in favor of a machine language simulation

pan-kas( IfevelIopedi by Neural W4are Tne. The machine 1anguaore

simulation was us#-c] for its greater speed and computational



Initial exoerimeritation with different network

architectures determined that a t;.o Laver network with N

inputs and N hidden nodes was sufficient to achieve learning

convergence. Adding nodes to the hidden layer reduces the

required number of cycles to converge ice but does not speed

convergence in terms of processing time (limitation of

software simulations). Adding a second hidden layer

increases the required cycles to convergence. Evaluation of

the different architectures on a small sample yielded

identical prediction results. This is consistent with past

experience in similar applications (3:449).

Figure 6 is a plot of the root mean squared error

versus number of training cycles of different network

architectures and variable compositions. Each of the

networks used for the cross-validation trials converged

within 200 presentations.

Results

The reports used for cross-validation predictions

eonsisted of the six satisfactory reports and six randomly

;elected excellent reports. A prediction for each of these

twelve reports was obtained by ,ithholding each in-turn from

the full sample and using the remaining reports to fit a

regression model and train a neural network. Each of the

ft4eve fitted models and trained networks were then used to

prediu't the -orresponding withheld report.
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The full sample of reports used to fit the 8 variable,

13 variable, and 18 variable models are included in Table

III. The reports selected for cross-validation are

identified in Table IV. The full sample of reports were

balanced to the extent permitted by the degrees of freedom

(e.g. 6 Satisfactory and 6 Excellent reports for the 8

variable model).

Table III. Full Sample of Reports
(For Regression and Network Training)

Model
Composition Training/Model Fitting Reports

8 Variable Excel: 8, 10, 4, 13, 20, 18
Sat: 5, 9, 12, 17, 19, 22

13 Variable Excel: 8, 10, 4, 13, 20, 18,
3, 7, 16, 21,

Sat: 5, 9, 12, 17, 19, 22

18 Variable Excel: 8, 10, 4, 13, 20, 18,

14, 1, 11, 15, 6,
2, 3, 7, 16, 21

Sat: 5, 9, 12, 17, 19, 22

Table IV. Reports Selected for
Cross-Validation Predictions

Excellent Satisfactory

8 5
10 9
4 12
13 17
20 19
18 22
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T .elve cross-validation predictions were obtained for

each of the model compositions (8, L3, 18 variables). The

raw output for the 8 variable regression and neural network

predictions are summarized in table V. Appendix I is a

c-mDlzt: ummar T -f the regression and neLwork predictions

for the three different model compositions.

Table V. Raw Output (8 Variable Predictions)

(Regression) (Neural Network)
Pred Actual Predicted Actual

Report Y y Y1 Y2 YI _2

8 1.0000 1 0.0627 0.9368 0 1
to 0.0337 1 0.1126 0.8885 0 1
4 1.0000 1 0.0402 0.9595 0 1
13 1.0000 1 0.2729 0.7291 0 1
20 1.0000 1 0.0305 0.9694 0 1
18 0.0173 1 0.4723 0.5267 0 1
5 0.0167 0 0.9920 0.0081 1 0

0.9921 0 0.1006 0.8999 1 ,
12 0.0000 0 0.9936 0.0066 1 0
17 0.0000 0 0.8366 0.1644 1 0
19 0.0000 0 0.9920 0.0080 1 0
22 0.9729 0 0.0463 0.9535 1 0

Analysis of Data

Table VI summarizes the paired prediction outcomes of

fh- regression - neural network cross-validations. The

rrediction of each withheld report is the product o)f a

-pnarate trained netTork and fitted regression model. This

table includes the total number of correct predictions out

-4C 12 predictions trials for each model composition.
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Table VI. Prediction Outcome Summary

Ratio of PCT

Test Pair Correct Pred. Correct

8 Variable

Regression
8 variables 8/12 67%

Neural Net
8 variables 10/12 83%

13 Variable

Regression
13 variables 6/12 50%

Neural Net
13 variables 9/12 75%

18 Variable

Regression
18 variables 8/12 67%

Neural Net
18 variables 10/12 83%

While the neural network outperforms the regression

model in each test pair, a statistical test is necessary to

determine if the apparent difference in performance is

significant. Because of the small sample, a paired measures

design was used for the cross-validations and a pairwise

statistical comparison was performed.

Table VII is a summary of the individual prediction

outcomes of the 8 variable test pair. Since the prediction

outcomes are expressed in terms of binary measures
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(i = success, 0 = failure), it follows that the population

of difference scores of the Daired measures are not normally

distributed. Therefore, non-parametric analysis must be

performed to determine the significance of differences in

the paired prediction outcomes.

Table VI[. Prediction Outcomes (8 Variable Pair)

(Prediction Outcomes)
Report Regression Network

8 exc success (1) success (
10 exc failure (0) success (1)
4 ex- success (1) success ( 1)
13 exc success (1) success 1)
20 exc success (1) success 1)
18 exc failure (0) success (1)
5 sat success (1) success (1
9 sat failure (0) failure (0)
12 sat success (1) success (1)
17 sat success (1) success ( i
19 sat success (1) success (1)
2 sat failure (0) failure (0)

TOTAL 8 10

0.67 0.83

The sign test is a non-parametric alternative to the

paired t-test which requires no distributional assumptions

about the paired samples. To perform the sign test, the

followinut null and research hypotheses are posited:

11o: Net - Rea = 0 (Net = Reg)

Ha: Net - Reg > 0 (Net > Reg)

t.here "Net - Reg" is the mean difference of the paired

measurs .
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Rejection of the null in favor of the research

hypothesis suggests there is a significant difference in the

prediction accuracies of the neural network and regression

models. Rejection should be based upon the weight of

evidence provided by the level of significance of each test.

STATISTIX II analytical software package was used to

perform the sign test computations. The results of the sign

test are summarized in Table VIII.

Table VIII. Sign Test Results

One Tail Reject
Test Pair Alt Hyp P-Value Null Hyp

8 var Net > Reg 0.250 yes
13 var Net > Reg 0.125 yes
18 var Net > Reg 0.313 no

Although specific p-values are subject to

interpretation, the weight of evidence provided by the test

results supports the research hypothesis. Judging from non-

parametric tests in general and these p-values in

particular, the power of the tests are probably weak.

If the paired outcomes could be expressed in terms of "N"

successes or a percentage instead of binary outcomes, the

assumption of normality could be evaluated and more powerful

parametric analysis would be possible.

One way of creating a more powerful test is by

combining the prediction outcomes. Since each cross-

validation report was tested on three independently fitted
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models (8 variable, 13 variable, 18 variable), the three

outcomes of each sampled report can be consolidated into a

single observation expressed in terms of N successes out of

M trials or a percentage. With the data in this

consolidated form, parametric assumptions can be evaluated

to determine if a paired t-test can be performed. Table IX

is a summary of the consolidated outcomes of the cross-

validation predictions.

Table IX. Consolidated Outcomes

Report Regression N. Network

8 1/3 (0.33) 3/3 (1.00)
10 1/3 (0.33) 3/3 (1.00)
4 3/3 (1.00) 3/3 (1.00)
13 2/3 (0.67) 3/3 (1.00)
20 3/3 (1.00) 3/3 (1.00)
18 1/3 (0.33) 3/3 (1.00)
5 3/3 (1.00) 3/3 (1.00)
9 0/3 (0.00) 0/3 (0.00)
12 2/3 (0.67) 3/3 (1.00)
17 2/3 (0.67) 2/3 (0.67)
19 3/3 (1.00) 3/3 (1.00)
22 1/3 (0.33) 0/3 (0.00)

MEAN 0.611 0.806
VARIANCE 0.118 0.151

Evaluation of parametric assumptions suggests a. paired

t-test is appropriate. Judging from the paired sample

variances, the assumption of equal variance should not be

rejected. Rankit plots of the sample difference scores

indicate no serious departure from normality (Appendix J).
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Based on these parametric assumptions, a paired t-test

was performed using the null and research hypotheses posited

previously. To hedge against invalid assumptions, the non-

parametric signed-rank test was also performed. Table X

summarizes the results.

Table X. Test Results (Consolidated Outcomes)

Paired t test Signed Rank test
Alt Hyp One Tail P-Value One Tail P-Value

Net ) Reg 0.0337 0.0469

Findings. Both parametric and non-parametric analysis

of the consolidated paired outcomes provide strong support

for the research hypothesis. The results indicate a

significant difference between the neural network and

regression performance. The p-values in Table X reflect

less than five percent probability that the improvement of

the neural network over the regression model (81% versus

61%) happened by chance.

Analysis of Alternate Sample Data

A pairwise comparison was repeated for, an alternate

selection of cross-validation reports. A different random

selection of six Excellent reports were combined with the

six Satisfactory reports and twelve additional cross-

validation predictions were obtained for each model
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composition (8, 13, 18 variable). Outcomes of each of the

model predictions were consolidated as in the original

analysis. The consolidated outcomes are summarized in Table

XI.

Table XI. Consolidated Outcomes (Alternate Sample)

Report Regression N. Network

14 1/3 (0.33) 2/3 (0.67)
1 2/3 (0.67) 1/3 (0.33)
11 3/3 (1.00) 3/3 (1.00)
15 1/3 (0.33) 2/3 (0.67)
6 3/3 (1.00) 1/3 (0.33)
2 1/3 (0.33) 1/3 (0.33)
5 3/3 (1.00) 3/3 (1.00)
9 0/3 (0.00) 0/3 (0.00)
12 1/3 (0.33) 2/3 (0.67)
17 3/3 (1.00) 2/3 (0.67)
19 3/3 (1.00) 1/3 (0.33)
22 1/3 (0.33) 0/3 (0.00)

MEAN 0.611 0.500
VARIANCE 0.138 0.111

Findings. Inspection of the composite prediction

accuracies (Net = 50%, Reg = 61%) is sufficient to conclude

that the evidence does not support the research hypothesis

(Net > Reg) for this sample of reports.

Interpretation of Results

The inconsistency between the results of the original

and alternate sample analysis is apparently due to anomalous

sample to sample variation. Closer examination of the

39



alternate sample reports reveals that the six Excellent

reports (14, 1, 1i, 15, 6, 2) are very close to the six

Satisfactory reports (5, 9, 12, 17, 19, 22) in content if

not output rating.

Based upon the alternate sample report narratives, it

was very difficult to discriminate between Excellent and

Satisfactory reports. This is confirmed by the lower

correlation with the dependent variable and much lower

adjusted R-Squared value (0.0966 in the alternate sample

versus 0.2093 in the original sample).

When the reports are very nearly the same in content,

(as in the alternate sample), the neural network and

regression model both have trouble "deciding" which rating

to assign. Hence, the rating probability approaches that of

a coin toss, 50/50 Satisfactory/Excellent.

Unlike the original sample, about half of the neural

network models trained from the alternate sample converged

to sub-optimal local minima even rfter several attempts with

different weight initializations. In other words, the RMS

error did not reach the desired global minimum because the

network converged to the wrong answer in one or more of the

training examples. This suggests no meaningful

discrimination can be made between the contents of the

Excellent and Satisfactory reports of the alternate sample.

Randomization of samples is intended to diminish the

effect of anomalous sample to sample variation. However,
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with small samples, such variation is still possible even

with random partitioning. Because the Excellent and

Satisfactory reports of the alternate sample are very close

in content, the neural network and regression models are

unable to discern any undeilying function; hence, no

meaningful discrimination between the two ordinal types can

be made.

By contrast, there appears to be enough discriminating

information in the content of the original sample reports

that an underlying relationship can be approximated. The

fact that the neural network was consistently better than 75

percent (81 percent composite) in correctly predicting

performance ratings for the original sample models (8, 13,

1 variable) supports the assumption that a discernable

relationship exists between the content and output ratings

for this sample data.

Sources of Possible Error. Although the neural network

was successful in approximating the functional relationship

underlying the reports in the original sample, there are

several potential sources of error in identification and

scoring of report variables which could obscure the

existence of a relationship between report content and

output ratings.

Any reader of an IG report narrative, who is not

intimately familiar with the unit inspected, will inevitably

irtroduce some error into the scoring of variables,
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oarticularly since a discrete value must be applied in

borderline cases.

The omission of external variables not specifically

addressed in the reports could introduce an indirect

confounding effect. For example, factors like host wing

mission, gross facility square footage, or weather zone

couLd significantly mitigate the effect of some variables

which would otherwise diminish or enhance the composite

rating.

The results of the alternate sample prediction

outcomes, in particular, suggest that the composite squadron

ratings are a function of more than just the component

performances explicit in the report narratives. There are

certain intangible qualities such as base appearance, work

force morale and "customer satisfaction" which almost

certainly enter into an evaluator's deliberations but are

not explicitly documented in the inspection reports.

Evaluation of Method. Future refinements to the method

used in this research should be directed toward reducing the

opportunities for error in the identification and scoring of

report variables.

The addition of more rating increments or a continuous

scale could perhaps allow finer discrimination in cases

where the report narrative suggests a borderline rating lies

somewhere between existing rating increments.
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Perhaps a better way to handle such borderline cases

would be to score the variable Low on the existing

observation and then create a duplicate observation with the

variable in question scored high.

External variables for which data is available should

be included in the models (e.g. host wing mission, gross

facility SF, weather zone). A variable corresponding to

host wing mission was omitted in this case because all four

of the missile wing bases in the sample were rated

Excellent. Without a larger balanced sample of missile wing

reports, such a variable would have been unduly weighted in

favor of an overall Excellent rating obscuring the effect of

the other predictors.

Many additional variables could have been extracted

from the IG reports and used for neural network training.

hut the variables were not present in the majority of the

narratives. For example, the refrigeration shop was

explicitly addressed in only 6 of 22 narratives.

Refrigeration shop was one of the variables eliminated

hepausp of its narrow input.

Tmplementation of the full set of 32 variables

identified originally, yielded a neural network prediction

accuracy of 67 percent durinn cross-validation. The

diminished performance is attributed to the confounding

effect of the [arue number of missing observations (114

missing observations) which had to ne scored "neutral" on

th, corrmspondin variables.



V. Conclusions

Results

The successful application of any function

approximation tool requires that there be an underlying

relationship between predictors and the dependent variable.

Where the existence of an underlying relationship could be

established between report content and output ratings, the

neural network significantly outperformed regression models

in correctly predicting squadron performance during cross-

validation trials (81% versus 61%). These results

demonstrate that neurocomputing can be successfully applied

in an organizational performance assessment application

where the existing relationship between organizational

components and composite performance is unknown.

The success of the neural network in discerning any

relationship at all is quite remarkable given the relatively

small sample size and opportunities for error in

identification and scoring of variables.

Examination of the report contents and results of the

analyses sugiests any existing relationship is subtle and

the function of additional extrinsic variables not

idlnt ified in the data.

\eural Net versus Redression. The improvement in

performance of the neural network over rearession is

itrtribted to the fact that regression is only valid (,here
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the general functional model is known. For a neurocomputing

application, the functional relationship need not be known.

Unlike the neural network, which negotiates a complex

error terrain in carrying out function approximations, the

regression model approximation is analogous to a single

ridge forming a boundary between "excellent" and

"satisfactory" samples which is made steeper by the logistic

transformation. For samples that do not lie squarely on

either side of this ridge, random variation can position

them "off-center" in the wrong direction, tipping the

balance in favor of "excellent" or "satisfactory" regardless

of the actual output rating.

The advantage of neurocomputing over regression should

be even more apparent in broader applications involving more

than two nominal classes. With sufficient training

examples, a suitable network architecture can be employed to

achieve the desired prediction accuracy.

By contrast, the utility of a regression model for

applications involving multiple classes is limited. Because

multiple classes must be expressed in terms of a single

dependent variable, the precision of such an approximation

can only diminish as the number of nominal classes increase.

Implications of Research

This research demonstrated the utility of

neurocomput ing as an alternative approach to performance
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measurement and prediction previously unavailable in the

organizational sciences.

Prediction of organizational effectiveness is a complex

problem involving subtle relationships among organizational

components. Such relationships can only be crudely

approximated, if at all, with conventional least square

estimation methods. Neurocomputing provides a means to

approximate these relationships and use them to

independently predict the rated effectiveness of an

organization.

Applications. With a definitive set of variables,

appropriate scoring criteria, and sufficient training

examples, this technology could have immediate application

as a management tool for squadron commanders. A commander

could use a trained network to gain insight into the

composite effectiveness of his squadron relative to other

squadrons command-wide. Such a tool would provide a means

to gauge the effect of alternative decisions favoring

conflicting squadron objectives or component functions. A

commander could then allocate resources toward each

objective or function in a way that maximizes overall unit

effectiveness.

This technology could also provide a useful supplement

to subjective evaluations conducted during unit

effectiveness inspections. Neural network predictions could

be used to establish "bench mark" or "baseline" ratings to
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helm experienced evaluators gauge the consistency of their

rating judgement, ensuring a fair and uniform application of

rating judgement from squadron to squadron.

Inexperienced evaluators could also benefit from the

collective "experience" of the neural network. This would

be particularly useful as a means to help leaven out the

erratic application of judgement which can be characteristic

of an evaluation team in transition, undergoing radical

changes in composition.

As new evaluations are performed, a neural network can

be retrained, incorporating the new knowledge. This way,

the "knowledge base" evolves with each new experience. This

application of neurocomputing should be regarded as a

supplemental tool since network predictions reflect the

"bias" of previous inspections and do not consider other

extrinsic and intangible factors.

In the organizational sciences, this approach to

effectiveness measurement may prove to be a useful

alternative to conventional least square estimation methods

or theory- based mathematics (e.g. Data Envelopment

An:illvsis). A trained network could be used to perform

"sensitivity analysis" of the predictor variables. Input

;alues can be varied or selected input nodes disabled to

determine the relative influence of predictors. Such an

analysis could provide some insight into the relative
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importance of variables within the control of the manager as

well as external factors beyond his control.

Recommended Research

Follow-on research should be considered to determine

the ultimate capability of neurocomputing as a prediction

tool for organizational performance. Collection of

evaluation data should be in sufficient quantities of more

than two ordinal output ratings. A broader set of variables

should be incorporated to include external factors for which

data is available.

Future research with major commands could ask

evaluation team members to identify appropriate variables

which influence squadron performance. They could also

develop criteria for scoring the variables. This should

result in a more definitive set of variables and accurate

interpretation of report narratives.

Sensitivity analysis should be considered in any future

research. This would not only provide insight into the

relative importance of specific variables but would also

demonstrate the robustness or error tolerance of the network

approximation.

There are other neurocomputing techniques different

from back-propagation which could be explored in an

organizational assessment application.
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The Hopfield network has been used as a content-

addressable memory. Such a network could be used to match

an un-rated organization with the closest stored "exemplar"

organization.

The Carpenter/Grossberg network has been used to

segregate or "cluster" similar input patterns. This type of

network could be used to explore where natural boundaries

between ordinal ratings should lie.

Conclusion

Neurocomputing is a new, rapidly emerging technology

that has only recently been explored in applications beyond

signal, speech and image processing. This research

demonstrates a successful application of neurocomputing as

an organizational performance assessment tool.

In the organizational sciences, this approach to

effectiveness measurement and prediction can be a useful

alternative to least squar( estimation methods. Continued

research will determine the ultimate capability of

neurocomputing in practical management applications.
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Appendix A: Single Layer Perceptron
(Ref. 13:45-47; 18:154-159)

A conventional multiple regression model uses beta

coefficients to transform input values (predictor/indicator

variables) into an output value (dependent variable). This

gives rise to the 'black box' analogy where the regression

function is regarded as a 'black box' that receives the

input variables. After 'turning the crank' the value of the

dependent variable emerges.

This same analogy applies to a perceptron. Signals

corresponding to input variables enter the 'black box' and

signals emerging correspond to a nominal classification. In

this case the 'black box' consists of a layer of processing

elements (Figure 7). Each processing element receives input

signals and transmits an output signal. The path from each

input signal to each processing element has a corresponding

connection strength or "weight". The value of each

processing element output signal is determined by a

mathematical formula (Figure 8) that defines the element's

output as a function of the input signals and corresponding

connection weights. These connection weights can be

regarded as little "beta coefficients" that evolve over time

;,ith repeated exposure to training input-output examples.
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Connection Processing
Element

WI1
11 Y 1

'12

W21

X2 2
W22

INPUT OUTPUT

Xi = input signal
Y.,j = output signal

Wi.j = connection weight from i to j

Figure 7. Single-layer Perceptron

f(z)

z

-1

Yj = f(z)
where z = M(Wi.j * Xi) - (threshold value)

Figure 8. Haid Limiting Function
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Appendix B: The Exclusive-Or Parity Problem
and Linear Separability

xl

input - Y output

X2

Y f(inputs, connection weights)

+1 class A

-1 class B

X2

A A
A A

B

A B B
B B

_ 'X1

* decision boundary

Shown above is a single layer perceptron that
classifies an input vector (XI,X2) into two
classes denoted A and B.

Figure 9. .. oP R Tion (from 13:45).

In performing classification tasks, single-layer

perceptrons can only discriminate among linearly separable

classes. In other words, in deciding whether an input

belongs to one of two classes (denoted A or B), the

52



perceptron forms two decision regions separated by a

hvperplane in the space spanned by the inputs (figure 9).

The exclusive-or (XOR) parity problem is an example of

a classification problem with meshed decision regions where

the classes cannot be separated by a single hyperplane (or

line in two dimensional space). The parity problem is one

in which the output required is 1 if a binary input pattern

contains an odd number of is and 0 otherwise. The XOR

problem is a parity problem with input patterns of size two

(13:45-46; 18:330-335).

Input pattern Output pattern

X1 X2 Y Class

0 0 0 (B)

0 1 1 (A)

1 0 1 (A)

1 1 0 (B)

A single layer perceptron cannot solve this problem because

the classes cannot be separated by a single line (figure 10).

The addition of multiple layers with hidden units allows

the perceptron to form convex or closed regions in the space

spanned by the inputs permitting separation of the classes.

Thus, in the case of the XOR problem, a perceptron can learn

to discriminate between the two classes (figure 11) via back-

propaaation.

53



X2

A

0 Q 0
I xi

0 1

Figure 10. XOR Decision Region of Single-layer Perceptron
(from 13:46).
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hidden unit

input2A_ Y (output)

X2

X2

,,,/ /'>,
1 X

0 G

0 1

Figure 11. XOR Decision Region of Multi-layer Perceptron
(from 13:46)



Aooendix C: Generalized Delta Rule
(from 18:322-328)

The generalized delta rule is a means of incrementally

modifying network connection weights to reduce the global

output error during each training presentation. The

generalized delta rule says the weight of each connection

should be changed by an amount proportional to the product

of the processing element output signal, Xi, and an error

signal, '.j, available to the unit receiving that output.

In symbols, Yj

Weight change Lwij 1* 9.j * xi

= gain term (learning 
rate)

6.j = error signal downstream of I

Xi = output signal from unit i

Determination of the error signal starts with the output

units. For an output unit, the error signal is given by

6 iD.j - Yj) * F'(z)

where

D J desired output

Y.i = actual output

z : net input signal

F'(z) = derivative of the transfer function

with the sigmoid functirn,

F'(z) = Y.j * (1 - YJ)
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thus

j = iDj - Y.j) t Y.j * (1 - Yj)

The error signal for hidden units is determined recursively

in terms of the error signal of the units in the forward

network layer to which it sends input and the correspondin-g

connection weight. That is,

'S.j = (, Wik)

with the sigmoid function,

,. Xj I (1 - xj , * W.ik

where Vj

X.j output of unit .j

c k - error signal in forward layer

W.Jk connection weight from unit .j to k I '

This method of distributing error and updating weights is

central to the back-propagation learning algorithm (see

appendix D). Ref. (18:322-328) provides a good description

And mathematical derivation of the generalized delta rule.
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Appendix D: Back-Propagation Training Algorithm
(from 13:49)

The back-propagation training algorithm is a gradient

descent technique which employs the generalized delta rule

to minimize the mean square error between the actual network

output and the desired output (see appendix C). Each neuron

(processing element) uses the si4moid function.

Algorithm Steps:

Step 1. Initialize Weights and Threshold Values:

Set weights and thresholds to small random values for

all nodes and all connections (e.g. between -0.1 and +0.1).

Step 2. Present Input and Desired Outputs:

From the training examples, present an input array

reopresenting the N input varia' les (X, X2, X3, . . . Xn)

along with the M desired output variables (DI, D2. D3

Dm). The desired output array is specified by setting the

output values to zero except for the output representing the

desired classification which is set to 1. The M output

unitf correspond to the M classes.

stcp 2. Calculate Actual Outputs:

.Ising the sigmoid function, the output signals from the

units in the first and succeeding layers are calculated in

tirn tinti) the output array is determined (Y1, Y2, ... Ym).
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Sten 1. AdaDt Weights:

Starting at the output layer and working back to

previous layers in turn, the weights are adjusted as

follows:

Wi.j(t+l) = Wi.j(t) + 'I* 6 'j * Xi'

where Wi.j(t) is the connection weight from unit i to unit .J

at. time t, Xi' is the signal from unit i, is a gain term

and J is an error term for unit j.

F r output url[ s,

S : ) - V .i , Y'j , (1 - Y.j)

S,.- r-i output

V. : t'I aal L utput

For h d n its

=s , * j - X ,k * w k

.h&re (k* W.jk) is summed over all K units in the layer

down2-tream unit .j.

Internal unit thresholds are adapted in a similar manner,

Wj(t+l) Wjj(t) + V *

where Wj is the internal threshold for unit j.

stern 5: Che(k for termination criteria.

If" the R.IS error is smaLl- enough (typically < 0.1) then

stop trainin . Otherwise, repeat by going to step 2.

R.fS Frr)r SQR'( E (Di - Yi )2 /n



NOTE: The addition of a momentum term to the weight update

can sometimes speed convergence and help avoid local minima.

Momentum term = alpha*fWij(t) - Wij(t-1))

where

0 < alpha < 1.

Weight changes are thus smoothed as follows:

Wij(t+l) = Wij(t) + Sj * xi'

+ alpha*(Wij(t) - Wij(t-l)).
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Appendix E: Scoring Criteria

Input variables are assigned values based on the following
criteria:

Outstanding (+3)

Overwhelming balance of comments reflects singular
performance. Includes adjectives such as "outstanding" or
"superior"

Example, Variable DEH:

"Family Housing Management continues to provide
superior service to their customers. The level
of effort aid involvement is a model for the
command .

Excellent (+2)

Overwhelming balance of comments suggests performance
beyond satisfactory. Includes adjectives such as "superb",
"excellent", "exceptional", "exemplary".

Example, Variable DEH:

"The Family Housing Management Branch pro,'ides
superb support to the wing. A professional
staff is providing customers useful information,
particularly in housing referral .

Satisfactory (three subsets):

Favorable (+I)

Comments are favorable in tone. Contains
few if any unfavorable observations. Any unfavorable
rbservations are off-set by overwhelming balance of
favorable comments.

Example, Variable DEH:

"Personnel in the Military Family Housing Branch
are providing efficient, courteous service to
all customers .
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Neutral (0)

Not mentioned/Omitted from report, or consists
primarily of declarative sentences which do not reflect
performance beyond what is expected. Favorable comments are
off-set by unfavorable ones.

Example, Variable DEH:

"'The Family Housing Management Branch provides
adequate support to the base and other military
families

Unfavorable (-1)

Balance of comments are unfavorable in tone up to but
not including marginal or unsatisfactory
observations.

Example, Variable DEH:

"The Family Housing Management Branch provides
satisfactory support to the wing. The white
exterior of the housing office is aesthetically
pleasing, but the interior floor plan is not
conducive to customer service . Base housing
area appearance is suffering and a means of
correcting this situation is underutilized.

"arsinal (-2)

Comments are unfavorable in tone to include
descriptions of "marginal" performance.

E-ample, Variable DEH:

"The Housing branch is marginal for sustaininsg
e:,essive housing unit downtime, failure to ensure
hmusing units receive effective maintenance, and
-.ntinuing a trend of poor area appearance "

Vnsatisfactorv (-3)

Comments are unfavorable in tone to include
1"criptions of "unsatisfactory" conditions.

.aple, \:ariable WKCTL:
"Njmerous discrepancies were noted within produc'tion
control . . . the job order delinquency rate is 36

.it.FS IS AN UNSATISFACTORY CONDITION "
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ApDendix F: Data Set (18 Variables)

REPORT YI Y2 DPCWD TRNG ADMIN

1 0 1 0 1 0

2 0 1 -1 0 2

3 0 1 -1 0 -1

4 0 1 0 0 2

5 1 0 1 0

6 0 1 -1Z 2

70 1 0 -1 

8 0 1 -1 -1 .

9 1 0 -3 0 2

10 0 1 0 0 1

11 0 1 0 0 2

12 1 0 -1 2 2

13 0 1 0 0 2

14 0 1 1 0 0

15 0 1 0 0 0

16 0 1 1 -1 2

17 1 0 0 1 -2

18 0 1 0 1 2

19 1 0 -1 0 -2

20 0 1 0 0 -1

21 0 1 -1 -2 -2

22 1 0 0 0 1

REPORT DEI DEU DEE DEF DEH

1 2 0 2 2 2

2 -1 1 1 3 1

3 1 2 2 2 3

4 1 3 2 2 1

5 0 2 -1 2 0

6 0 2 1 2 2

7 1 1 2 2 2

8 1 2 3 2 0

9 1 0 0 2 -1

10 0 3 2 2 0

ii 1 1 2 2 2

12 -1 -1 1 2

13 1 0 2 2

14 1 1 -1 2 2

15 1 1 2 2 2

16 1 2 2 2

17 -1 0 1 -2 2

18 1 2 0 2 1
19 0 3 1 2 2

20 2 2 2 2 2

21 1 3 2 3 2

22 -1 3 1 2 2
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REPORT SHELP PBEEF WKCTL LOG PLAN

1 3 -1 0 0
2 0 1 1 1 1
3 -2 0 3 3 0
4 3 2 -2 0 0
5 2 -1 0 1 0
6 0 0 0 2 2
7 -1 2 2 2 2
8 0 1 1 -1 1
9 2 -1 1 2 1

10 2 2 1 1 0
11 1 1 2 2 0
12 -1 -1 1 0 1
13 3 1 0 2 1
14 2 0 1 1 0
15 0 1 0 1 1
16 2 0 1 1 2
17 0 0 1 1 1
18 3 2 1 1 0
19 0 -1 -1 3 2
20 1 3 1 0 0
21 3 2 0 1 1
22 0 2 1 1 0

REPORT HORIZ VERT ZONE UTIL SANIT

1 0 2 0 0 3
2 0 1 0 1 0
3 2 1 0 0 0
4 -1 1 0 2 2
5 0 1 0 0 1
6 0 1 0 2 1

7 -1 3 0 2 2
8 1 1 0 2 1

9 1 2 0 1 1
1o 1 2 1 2 2
11 0 1 1 2 2
12 -1 1 -1 0 1
13 0 1 0 1 3
14 1 1 0 1 1
15 0 1 0 2 3
16 1 2 0 2 1
17 1 2 2 1 1
18 1 0 1 2 1
19 1 0 0 1 0
20 0 1 1 1 2
21 1 1 1 2 0
22 0 0 0 2 1
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Appendix G: Variable Selection Analysis

1. SAS output for Stepwise Regression Procedure:

STATISTICS FOR ENTRY: STEP 3
DF = 1,18

MODEL
VARIABLE TOLERANCE R**2 F PROB>F

DPCWD 0.954122 0.5335 0.4597 0.5064
TRNG 0.775372 0.5261 0.1690 0.6858
ADMIN 0.99064 0.5643 1.7629 0.2009
DEU 0.779936 0.5232 0.0599 0.8095
DEE 0.777264 0.5564 1.4095 0.2506
DEF 0.901046 0.5529 1.2597 0.2765
DEH 0.994093 0.5554 1.3657 0.2578
SHELP 0.816171 0.5250 0.1278 0.7249
WKCTL 0.995276 0.5294 0.2975 0.5921
LOG 0.94422 0.5218 0.0083 0.9282
PLAN 0.833871 0.5458 0.9592 0.3404
HORIZ 0.951211 0.5229 0.0482 0.8288
VERT 0.941929 0.5296 0.3062 0.5868
ZONE 0.825252 0.5325 0.4187 0.5257
UTIL 0.57931 0.5347 0.5065 0.4858
SANIT 0.780771 0.5216 0.0000 0.9999

NO OTHER VARIABLES MET THE 0.1000 SIGNIFICANCE LEVEL FOR ENTRY

SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT
VARIABLE Y2

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN R**2 R**2

1 DEI 1 0.3650 0.3650 7.51
2 PBEEF 2 0.1566 0.5216 3.2

VARIABLE

STEP ENTERED REMOVED F PROB>F

I DEI 11.4969 0.0029
2 PBEEF 6.22000 0.0220
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2. SAS Output for Backward Elimination Procedure:

BACKWARD ELIYINATION PROCEDURE FOR DEPENDENT VARIABLE Y2

STATISTICS FOR REMOVAL: STEP 11
DF = 1,13

PARTIAL MODEL
VARIABLE R**2 R**2

DPCWD 0.0851 0.6789
TRNG 0.0921 0.6719
DEI 0.0530 0.7111
DEE 0.0709 0.6931
DEF 0.1576 0.6064
PBEEF 0.1026 0.6615
HORIZ 0.0834 0.6806
VERT 0.0599 0.7041

ALL VARIABLES IN THE MODEL ARE SIGNIFICANT AT THE 0.10 LEVEL

SUMMARY OF BACKWARD ELIMINATION PROCEDURE FOR DEPENDENT
VARIABLE Y2

VARIABLE NO. PARTIAL MODEL
STEP REMOVED IN R**2 R**2 C'P) F

1 ADMIN 17 0.0008 0.9245 17.03 0.0319
2 ZONE 16 0.0017 0.9228 15.1 0.0909
3 DEH 15 0.0152 0.9077 13.7 0.9822
4 LOG 14 0.0172 0.8904 12.4 1.1183
5 PLAN 13 0.0162 0.8742 11.05 1.0371
6 SHELP 12 0.0166 0.8576 9.72 1.0564
7 WKCTL 11 0.0270 0.8306 8.80 1.7061
8 SANIT 10 0.0287 0.8020 7.96 1.697
9 DEU 9 0.0237 0.7783 6.91 1.3152
10 UTIL 8 0.0142 0.7640 5.48 0.7709
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3. SAS Output for Forward Selection Procedure:

STATISTICS FOR ENTRY: STEP 11
DF = 1,10

MODEL
VARIABLE TOLERANCE R**2 F PROB>F

DEU 0.403758 0.7878 0.2292 0.6424
SHELP 0.542032 0.7830 0.0005 0.9819
WKCTL 0.586084 0.7030 0.5307 0.4830
LOG 0.613619 0.7834 0.0198 0.8908
PLAN 0.476947 0.7880 0.2365 0.6373
ZONE 0.264332 0.7877 0.2212 0.6482
UTIL 0.414095 0.7892 0.2949 0.5990
SANIT 0.258208 0.7895 0.3090 0.5905

NO OTHER VARIABLES MET THE 0.45 SIGNIFICANCE LEVEL FOR ENTRY

SUMMARY OF FORWARD SELECTION PROCEDURE FOR DEPENDENT
VARIABLE Y2

VAR NO. PARTIAL MODEL
STEP ENTERED IN R**2 R**2 C(P) F

1 DEI 1 0.3650 0.3650 7.51 11.50
2 PBEEF 2 0.1566 0.5216 3.22 6.22
3 ADMIN 3 0.0427 0.5643 3.50 1.76
4 DEH 4 0.0628 0.6271 2.98 2.86
5 HORIZ 5 0.0299 0.6570 3.77 1.40
6 DEE 6 0.0173 0.6743 5.08 0.80
7 DEF 7 0.0175 0.6919 6.38 0.80
8 DPCWD 8 0.0259 0.7177 7.34 1.19
9 VERT 9 0.0198 0.7375 8.55 0.90
10 TRNG 10 0.0455 0.7830 8.72 2.31
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Appendix H: Neural Network Simulation Program

program cenetl8x(results, zerowt, train, error);

Pascal program to implement back-propagation neural network
learning. Program simulates a two layer perceptron with
18 inputs, 18 hidden nodes and 2 outputs. Program includes
random or sequential presentation of training examples and
a momentum term in the weight updates.

Written by F. Baugh, June 1989

var
Z, ( weighted sums of inputs plus threshold value I
eta, ( gain term (learning rate) I
alpha, f momentum coefficient }
count, f number of iteration }
total, f total iterations I
step, f iterations per stepped output }
dsum,
sum, ( place
old, { holders I
err,
errI, I error output node 1 1
err2, { error output node 2 1
maxerr, [ maximum squared error
sumerr, { cumulative squared error
maxroot, f maximum root squared error }
rms, { root mean squared error I
cycle,
res:

real;
S,

example,
1,

P

n:
integer;

I,
M,

q:

char;
test,
train, ( training set data file I
zerowt, I initial weights data file I
error, I RMS error output file )
results: " "trained weights" output file }

text;
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w: array[19..38] ( threshold weights }
of real;

wl: array[1..18,19..36] { layer 1 connection weights
of real;

w2: array19..36,37..381 { layer 2 connection weights I
of real;

delt: array[19..38] (threshold momentum wt change)
of real;

deltl: array[1..18,19..36] { layer 1 momentum wt change }
of real;

delt2: array[19..36,37..38]{ layer 2 momentum wt change }
of real;

x: array19..381 1 output, node j }
of real;

d: array[19..381 f error term, node j
of real;

yt: array[l..50,1..2] I output 'y', training set }
of real;

xt: arrayll..50,1..18] I input 'x', training set I
of real;

yout: array[l..50,1..21 f prediction, trained network}
of real; f yout = f(xl, x2,..., x18) I

f input/output arrays are dimensioned to accomodate up to
50 examples. Dimensions may be changed to include more
examples if needed.}

label start;
label stop;

BEGIN
clrscr;
f message I
writeln('This program simulates a two layer perceptron with
18 inputs, ');
writeln('18 hidden nodes, and 2 outputs. Network learning
includes ');
writeln('cyclic presentation of inputs and momentum. '
writeln(' ');
writeln('last revision: 1800, 4 Aug 89 ');
writeln( ' ');
writeln( 'press <RETURN> to continue');
readln(q);

initializing parameters }

assign results,'outwtl8.3');
assign(zerowt,'z,'rowt.al');
assign(train,'train18.dat');

assignlerror, 'error3.dat');
rewrite(results);
rewrite(error);
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reset(zerogt);
reset(tra-n);
eta := 0.9;
alpha 0.6;
count 0;
1 r
n 1;

f initialize weights I

f reading threshold weights (nodes 19 to 38) }
j := 18;
while j < 38 do

begin
j := j + 1;
readln(zerowt,wfji);
delt[j] := 0;
writeln('Initializing threshold weights ',j);
clrscr;
end;

f reading layer I connection weights }
i := 0;
while i < 18 do

begin
i i+1;
j : 18;
while j < 36 do

begin
j := j+1;
readln(zerowt,w1[i,jI);
deltl[i,j] := 0;
writeln('Initializing layer I connection weights

',j);
clrscr;
end;

end;

f reading layer 2 weights }
i := 18;
while i < 36 do

begin
i i + 1;
j : 36;
while j < 38 do

begin
j := J+1;
readln(zerowt,w2[i,.j1);
delt2[i,j] := 0;
writeln('Initializing layer 2 connection weights

clrscr;
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end;
end;

reading training data

i :=0;
while i < 50 do (50 =max number of training examples

begin
i := i+1;
read(train, yt[i,1l, yt[i,21, xt[i,11, xt(i,21,

xt[i,31, xt[i,4], xt(i,5], xt(i,6), xt[i,7], xt[i,8],

sum := yt~i,1]+ytt'i,21;
if sum =1

then
example :

writeln('reading training set ',i);
clrscr;
e-nd;

start:
clrscr;
twriteln( '

writeln( 'Data set includes ' ,example, ' examples')
writeln(' ');
writeln('***** Network Menu ***)
writeln( ' ')

writeln( ' Options:');
writeln( ''

writeln( ' To implement nxetwork learning, press
(RETURN>' );
writeln( ' ';

writeln(' To test the net with existing weights,
enter "t" ,<RETURN)');
writeln(' ');
writeln(' To save weights enter "save',<RETURN>');
writeln(I ');
writeln( ' To modify learning parameters enter
" m',<RETURN>');

writeln( ''

writeln(' To stop, enter "exit",<RETURN>');
writeln( ''

readln(q);
if q ='e

then
goto stop;
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if q=W
then

begin
cir scr;
writeln( '

writeln('
Current')

writeln('Option Description
setting P

writeln('9)
writeln(' 1 learning mo~de >

writeln(' (r = random

writeln( ' (c =cyclical)

writeln( '

writeln('')
writeln( ' 2 learning rate >

Yeta: 2 :2);
writeln( '

writeln('')
writeln( ' 3 momentum coeff >

,alpha:2:2);

readln(p);
if p = 1

then
begin
write('enter desired learning mode:')
readln(1);
writeln('')
if 1 = c

then
writeln( presentation of training

examples will be cyclical')
else

vriteln( 'presentation of training
examples will be random');

end;

f p = 2
then

begin
wr~te('enter desired learning rate:')
readln(eta);
writeln( ' ');

writeln('learnino rate = ',eta:2:2);
end;
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if p = 3
then

begin
write('enter desired momentum coefficient: '

readln(alpha);
writeln( ' );

writeln('learning rate = ',alpha:2:2);
end;

goto start;
end;

if q = '3'
then

begin
( print trained weights to file I
writeln('saving weights');

I threshold weights I
j ": = 18;
while j < 38 do

begin
j := j + 1;
writeln(results,w j ] :4:4);
end;

layer 1 connection weights }
i :: 0;
while i < 18 do

begin
i : i+ ;

J " 18;
while j < 36 do

begin
,j :: .j+ 1*;
writeln(results,wl[i,,j :4:4);
end;

end;

i layer 2 connection weights I
I "= 18;
wh .le i < 36 do

beg in
i + 1;
36;

w4hile ,j < 38 do
begin

writeIn( results,w2[i,.j] :4 -!
end;

end;
- r t ar t "



end weight save I

if o t
then

begin

fcalculation of outputs
writeln('predicted output =f(xl, x2, x3, x18)');

writeln( '

writeln( '

writeln('From input data: Predicted:');
writeln(' ';
writeln('Y1 Y2 Yl Y2';
writeln(' ');

(Forward calculation of neuron outputs for each

training set input vector
k :=0;
while k < example do

begin
k := k+1;

layer 1 outputs

:=18;
while j < 36 do

begin
j j+1;

i :z0;
sum :=0;
while i < 18 do

begin
i := i+t;
sum := sum + w1i,,jl*xtfk,ij;
end;

z := sum + wfrJ];
x[J] := 1/(l + exp(-z));
end;

layer 2 outputs I
:=36;

wh ile j / 38 do
be qi n

18;
'um 0;
while i < 36 do

beg in

slim := uIm + w2 fi,.jI*<F 1
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end;
z :=sum + wiji;
xfj] +( +exp(-z));
end;

writeln(yt[k, 11:4:0,' ' yt[k,21 :4:0,'
,%fr371:4:4, ' ,x[381:4:4);

end,
writeln( '

writein) 'press <ENTER> to continue');
readlnIq);
goto start;
end;,

promptinga for 'total' and 'step'I

write( 'enter total number of iterations:'
readln( total);
writeln( ' ')

write( 'enter number of iterations per output:'
readln( step);
writeln( ' ')

writeln('total ',total:4:0);
writeln('step =',step:4:0);
writeln( ''

writein) ''

writeln( ''

if 1 (-
then

beg-in
writein) ' Training RINS RMAX')

writeln( ' Iteration sweep error
error');

writeln('')
end

else
begin
writeln(' RMS RMAX');
writeln(' Iteration error error'):
writeln( ''

end;

fTrainig? the- Net

whi le count <total do
Beg, i n
U(fift.' count. + 1;



begin presentation of training examples I

if I = 'C'
then

begin
k := n;
if n = example + J { cyclic

selection I
then

k 1;
n := n + 1
end

else
k := trunc(example*random) + 1; { random

selection

( forward calculation of neuron outputs

( layer 1 outputs }
j := 18;
while j < 36 do

begin
j := j+1;
i := 0;
sum := 0;
while i < 18 do

begin
i := i+1;
sum := sum + wi[i,.jj*xt[k,i];
end;

z := sum + w[jl;
xf.j] := 1/(1 + exp(-z));
end;

I layer 2 outputs
:= 36;

while j < 38 do
begin

3 := j+1;
i := 18;
sum := 0;
while i < 36 do

begin
i := i+1;
sum := sum + w2[i,jjtx[i;
end;

z sum + w[.J ,
*f~j := 1/(1 + expV-z));
end;
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f adapting weights (backward error propagation)

f output error & threshold weight update I
:= 0;

j := 36;
while j < 38 do

begin
j := j+l;

i i+l;

old wLj];
d[,jl x[jl*(l-x[.jl)*(yt[k,il-x[.j]);
wf.j] w[,j] + eta*dfj] + alpha*delt[.j];
delt[.j] := wf.j] - old;
end;

f hidden layer error & threshold weight update
i := 18;
while i < 36 do

begin
i := i+1;
dsum := 0;
j := 36;
while j < 38 do

begin
j := j+1;
dsum := dsum + d[jl*w2[i,j];
end;

old := w[ij;
dfi I x[i Il* - x[iI)*dsum;
w[i] wril + eta*dfil + alpha*delt[il;
deltril := wfi] - old;
end;

f hidden layer connection weight update }
i := 18;
while i < 36 do

begin
i := i+1;

j := 36;
while j < 38 do

bedin
J := .J+1;
old := w2fi,,jl;

w2ri,.jl := w2[i,.j1 + eta*d[jl*xfil +

aIpha*delt2[i,.ij;
delt2[i,jl := w2[i,.jl - old;
end;

end;
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{ input layer connection weight update
:=0;

while i < 18 do
begin
i i+1;
j 18;
while j < 36 do

begin
j := j+1;
old := wl[i,j];
w1fi,j] := wl[i,j] + eta*drj]*x[i] +

alpha*deltl[i,];
deltl[i,j] := w1[i,j] - old;
end;

end;

I calculating outputs at each stepped pass }
res := count/step;
if frac(res) = 0

then
begin
k :: 0;
maxerr 0;
sumerr 0;
while k < example do { calculation of

training set outputs }

begin
k := k+1;

( layer 1 outputs I

j := 18;
while j < 36 do

begin
j : j+ ;
i 0;
sum := 0;
while i < 18 do

begin
i := i+1;
sum := sum +

wli r ,.i1 *:t fk ,i
end;

z := sum + w[j];
x[.jl] = / + exp(-z));
end;
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layer 2 outputs }

s :: 0;
j := 36;
while j < 38 do

begin
s :7 s+1;
j j+l;
i 18;
sum := 0;
while i < 36 do

begin
i := i+1;
sum := sum + w2[i,j]*x[i];
end;

z := sum + wfij;
x[j] := 1/(1 + exp(-z));
yout(k,s] := x .JI;
end;

f calculation of squared error }

errI sqr(yout[k,lJ - ytfk,1]);
err2 sqr(yout[k,2] - yt[k,2]);
if erri > err2

then

err erri
else

err err2;

maximum error 1
if erL" > maxerr

then

maxerr := err;

cumulative error I
sumerr := sumerr + errI + err2;

end;

{ end calculation of entire training set }

calc1Jlating RMS error at each stepped
iteration }

cycle := trunc(count/example);
rms := sqrt(sumerr/(example*2));
maxroot : sqrtlmaxerr);
if i

then
begin
twriteln(' ', count:7:0, ' '

' 1 e :7 :0,' ',rms:4:4,' ', maxroot:4:4);

writeln(error, count:7:0, '
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cycle:7:0,' 'rms:4:4,' ',maxroot:4:4);

end
else

begin
writeln(' ',count:7:O,

',rrns:4:4,' ',maxroot:4:4);

writeln(error, count:7:O,

',rms:4:4,' ',maxroot:4:4);

end;

end;
fend stepped iteration

End;
End network training

t.riteln( '

writeln( 'Do you want to continue?');
readln(q);
if q = Y I

then
goto start;

stop:
writeln('do you want to save weights ?');
readln(q);
if q = Y I

then
begin
fprint trained weights to file I

writeln('saving weights');

f threshold weights I
j := 18;
while j < 38 do

begin
j := .j + 1;
writeln(results,wfil:4:4);
e-nd;

layer 1 connection weights
1:= 0;

while i < 18 do
begin
i := i 1

j := 18;
while j < 36 do

begin

writeln(results,wl~i,.jV-L:4);
end;

end;
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layer 2 connection weights I
:= 18;

while i < 36 do
begin
i i + 1;
j 36;
while j < 38 do

begin
j := j+1;
writeln(results,w2[i,j]:4:4);
end;

end;
end;
f end weight save I

close(results);
close(zerowt);
close(train);
close(error);

END.

f Frank Baugh I
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Appendix I: Output from Cross-Validation Trials

8 Variable Model

Actual (Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 Y

8 exc 0.062662 0.936842 1.0000
10 exc 0.112565 0.888472 0.0337

4 exc 0.040213 0.959503 1.0000
13 exc 0.272907 0.729138 1.0000

20 exc 0.030481 0.969430 1.0000

18 exc 0.472339 0.526682 0.0173

5 sat 0.991958 0.008054 0.0167
9 sat 0.100630 0.899928 0.9921
12 sat 0.993596 0.006590 0.0000
17 sat 0.836645 0.164449 0.0000

19 sat 0.991960 0.007992 0.0000

22 sat 0.046344 0.953524 0.9729

13 Variable Model

Actual (Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 Y

8 exc 0.034160 0.967113 0.0000
10 exc 0.285186 0.715311 0.0141
4 exc 0.083628 0.917516 1.0000
13 exc 0.265724 0.740571 1.0000

20 exc 0.015948 0.984669 1.0000
18 exc 0.176932 0.825691 0.0559
5 sat 0.998800 0.001209 0.0000

9 sat 0.025167 0.974961 0.9949
12 sat 0.971944 0.027840 0.0000
17 sat 0.095357 0.905250 1.0000
19 sat 0.881802 0.120842 0.0000
22 sat 0.028366 0.972002 0.8586
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18 Variable Model

Actual (Neural Net Prediction) (Reg Pred)
Report Rating Yl Y2 Y

8 exc 0.129772 0.869767 0.0006
10 exc 0.098736 0.902190 1.0000
4 exc 0.018796 0.981202 0.9994
13 exc 0.152416 0.847843 0.4522
20 exc 0.026731 0.973338 1.0000
18 'exc 0.178046 0.820164 1.0000
5 sat 0.737891 0.26900 0.0036
9 sat 0.037942 0.961539 1.0000
12 sat 0.993368 0.006584 0.9981
17 sat 0,755344 0.231363 0.0000
19 sat 0.996412 0.003631 0.2270
22 sat 0.047274 0.952327 0.0000

83



8 Variable Model, (Alternate Sample)

Actual (Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 Y

14 exc 0.440171 0.565847 0.0000

I exc 0.534030 0.477379 0.9999

11 exc 0.135683 0.865385 0.9993
15 exc 0.172818 0.829728 0.3845
6 exc 0.413235 0.588076 1.0000

2 exc 0.995555 0.004484 0.0323
5 sat 0.918370 0.081363 0.0000

9 sat 0.056906 0.941930 0.9998

12 sat 0.759408 0.232830 0.9910
17 sat 0.285728 0.721084 0.0000

19 sat 0.252400 0.744654 0.0000

22 sat 0.024315 0.975588 0.6596

13 Variable Model (Alternate Sample)

Actual (Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 y

14 exc 0.389303 0.606516 1.0000
1 exc 0.597827 0.397503 1.0000

15 exo 0.092907 0.907757 0.9744
6 exc 0.780399 0.223840 0.0000

2 exc 0.944783 0.054456 0.9997
It exc 0.066412 0.933905 0.9780
0 sat 0.954918 0.045763 0.0000
9 sat 0.022977 0.976975 1.0000
12 CL 0 018223 0.982116 0.0998
i7 sat 0.902589 0.101709 0.0000

19 sat 0.114542 0.885549 0.0149
22 sat 0.024868 0.975444 0.9946
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18 Variable 'lode (Alternate Sample)

Actual (Neural Net Prediction) (Res Pred)
Report Rating Y1 Y2 Y

14 exc 0.731884 0.265040 0.4466
1 exc 0.303620 0,709906 0.0079

ci exc 0.037471 0.962645 0.9996
15 exc 0.092089 0.906209 0.9957
6 exc 0.933140 0.068237 0.7879
2 exc 0.990483 0.009197 0.00025
5 sat 0.737891 0.269006 0.0036
9 sat 0.037942 0.961539 1.0000
12 sat 0.993368 0.006584 0.9981
17 sat 0.755344 0.231363 0.0000
19 sat 0.996412 0.003631 0.2270
22 sat 0.047274 0.952327 0.0000
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Appendix J: Rankit Plots

RANKITS VS (Net-Reg)
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Figure 12. Rankit Plot, Paired Differences; Oriv Sample



RANKITS VS (Net-Reg)
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Figure 13. Rankit Plot, Paired Differences; Alt Sample
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